Kawasaki

Gas Turbines

National Turbine Technology And Regulatory Forum

5, 6 March 2003 San Diego, CA

Ideal Customer Characteristics

- High Electric Demand And Consumption
- Significant Heating And Cooling Requirements

Electricity: GT Driven Genset

Heat: GT Exhaust Heat Recovery

Gas Turbines

TARGET CUSTOMERS

Application Breakdown

- Baseload Applications
 - Factory (65%)
 - Hotel / Buildings (13%)
 - Hospital (11%)
 - District Heating (7%)
 - -Others (4%)

Application Breakdown

- Standby Applications
 - Government (34%)
 - -Telecom (23%)
 - Hospital (14%)
 - Bank / Computer (10%)
 - Hotel (5%)
 - Factory (5%)
 - -Others (9%)

Public Bank ITTC

Public Bank ITTC

1. G/T	Type: Simple-open cycle, single shaft Model: KAWASAKI M1A-13 Construction : Compressor; radial 2 stage Turbine; axial 3 stage Combustor; Single can Output: 915 kWe at 30° C Turbine Speed: 22,000rpm Fuel: Natural Gas/Diesel	3. Generator	Type: Synchronous generator Output: 1,300 kVA Power factor: 0.8 Voltage: 415 V
		4. HRSG	Type: Natural circulation type, Water tube boiler Evaporation: 3.7 t/h Steam press:: 8.5 kg/cm2-G at 173°C
2. Main G/B	Type: Epicyclic gear Bearing: Sleeve bearing Shaft speed: 1,500rpm	5. Gas Comp.	Type: Single Stage Screw (Electrical Motor Driven) Capacity: 525 [Nm3/H] Pressure: 14 [kg/cm2-G]

Public Bank ITTC

Propasa Paper

Propasa Paper

1. G/T	Type: Simple-open cycle, single shaft Model: KAWASAKI M7A-02 Construction : Compressor; axial 12 stage Turbine; axial 4 stage Combustor; 6 cans Output: W at 15°C at gene. Terminal Turbine Speed: 14,000rpm Fuel: LNG NOx abatement: DLE Engine (lean burn) Ise (back pressure) ain G/B Type: Parallel gear Bearing: Sleeve bearing Shaft speed: 1,800rpm	3. Generator	Type: Synchronous generator Output: kVA Power factor: Voltage: 13,800V
		4. HRSG	Type: Natural circulation type, Water tube boiler Evaporation: 36.5 t/h with suppl.burner Steam press:: 30 kg/cm²-G at 310°C
74 18		5.S/T	Type: Reduction speed type Output: We at 15 °C Turbine speed: rpm

Propasa Paper

Fersinsa Penicillin Plant

Ponderosa Papers

Celfimex Concrete

Other Installations

- Baseload Installations North America
 - Southern Alberta Institute of Technology
 - Ferris State College (MI)
 - Norwalk Hospital (CT)
 - St. Vincent's Hospital (FL)
 - Sonoma Development Center (CA)

Project Economics

- Payback
 - Many Less Than Four Years
 - Some Less Than Two Years

Environmental Benefits

Depends On Technology Of Existing Power Supply And Boiler

- CO₂ Emissions Reduced By 35 50%
- NOx Emissions Reduced By 20 70%

Environmental Benefits

Kawasaki GPB15X With 2.5 PPM NOx Guarantee

"One Tonne Son"

Summary

There are many applications for small turbines so long as the exhaust heat can be utilized.

Summary

The environmental benefits of distributed generation, especially with the new combustion technologies that have been developed, are substantial.

Kawasaki Gas Turbines - Americas

A Division Of Kawasaki Motors Corp., U.S.A.

Grand Rapids, MI

616 949 6500

www.kawasaki.com/gtd

